If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+15n-290=0
a = 5; b = 15; c = -290;
Δ = b2-4ac
Δ = 152-4·5·(-290)
Δ = 6025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6025}=\sqrt{25*241}=\sqrt{25}*\sqrt{241}=5\sqrt{241}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-5\sqrt{241}}{2*5}=\frac{-15-5\sqrt{241}}{10} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+5\sqrt{241}}{2*5}=\frac{-15+5\sqrt{241}}{10} $
| 5x-7x+13=2x | | 5x+250+2x=830 | | 5x+250-2x=830 | | 32/(t-4)^3=0 | | 2x+250-5x=830 | | 2w+4w+2=29 | | 1+1=x10 | | x+.3x=1000000 | | 3=1.05^t | | -7y+6=46-2y | | x=x+x/4 | | 3x/5-x/3=1/13 | | X-1=x/45 | | (X/3)-(1/5)=(x/5)+(1/3) | | 5x+4-3(2x-1)=(7-1)+x | | 5(x+2)-(x-1)=12 | | (3x+2)+(2x-5)=0 | | 2^(5x+6)=16 | | X²+y²=16 | | 2x-250-5x=830 | | 2x-250-2x=830 | | 5x-2x+250=830 | | s*4-19=21 | | 1p+1P= | | 2x1+2x2+x3+x4=12 | | 10m-7m=5m | | 45p/5p=9p | | 4d+2d=7 | | 45m+45L=127 | | (10*12)/x-2=80 | | x-7.20=0.4x | | 1x+300-3x=700 |